[W97] Tomas Galvez: Numerical renormalization group-based approach to secular perturbation theory

Wednesday 17 Jun 2020 at 15:00 GMT


Tomas Galvez
The University of Mississippi


Alejandro Cárdenas-Avendaño
Fundación Universitaria Konrad Lorenz (COL)
University of Illinois at Urbana-Champaign (US)


The standard methods of perturbative analysis are crucial to revealing many features of a physical system when it is not viable to obtain exact solutions. Nevertheless, the use of a truncated expansion might generate diverging solutions in systems that are known to be bound. Following the perspective of secular perturbation theory, we propose the numerical implementation of a renormalization group-based approach to promote the background parameters into time-dependent quantities. These new quantities are not restricted only to avoid secular growth, but can also improve the accuracy of the solution. As a concrete example, we use this method to calculate the soliton-like solutions of the Korteweg-de Vries equation deformed by adding a small damping term. This example shares several features with the evaluation of gravitational waveforms modified by perturbative corrections of general relativity.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.